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Smectic Liauid Crvstals 
as Model Systems of 

From conformal and independent fluctuations 
in freely suspended films to true long-range 
order in smectic elastomers 

Wim H. de Jeu, 
Elisabeth A. L. Mol 
and Gerard C. L. Wong 

FOM-Institute for Atomic and 
Molecular Physics, Amsterdam, 
The Netherlands 

n this paper we discuss the I absence of true long-range order 
(Landau-Peierls instability) in 
smectic liquid crystals, which is a 
direct consequence o f  the strong 
thermal fluctuations associated 
with ordering in less than three 
dimensions. While the resultant 
X-ray lineshape has been con- 
f irmed already quite some t ime 
ago, recently some new aspects 
have been discovered. In the first 
place, thanks to modern synchro- 
tron sources, the spectral depend- 
ence of the fluctuations in freely 
suspended smectic f i lms has 
been determined down to mole- 
cular dimensions. While a t  long 
wavelengths top and bottom of 
a film fluctuate in unison, a t  
shorter wavelengths a cross-over 

to independent fluctuations could 
be observed. Secondly, in smectic 
elastomers the stability of the 
layered structure against fluctua- 
tions is dramatically enhanced by 
the crosslinked architecture. As a 
result the usual Landau-Peierls 
instability is no longer observed. 
Hence we have found the first 
evidence for existence o f  long 
range translational order in soft 
’I-D’ layered systems embedded 
in 3-D space. 

Fluctuations in less than 3-D 
Long range translational order is a 
defining quality of 3-D crystals; it leads to 
the existence of Bragg reflections. On the 
other hand, it is a fundamental property 
of low-dimensional systems (2-D and 1-D) 
that such a translational periodicity is 
destroyed by thermal fluctuations [I]. 
However, we do not need a low-dimen- 
sional world to observe such effects; 
similar arguments apply in 3-D to  smectic 
liquid crystals. As is well known these 
consist of stacks of fluid monolayers, 
where rod-like molecules order into a 
density wave along one direction, but 
remain fluid in the other two (figure l(a)). 
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In such a system the ,143’ translational 
order of the fluid layers is not truly long- 
range but decays algebraically wi th 
relative position as rrr7 (see figure 2, 77 
small positive). Analogously to ‘real’ low- 
dimensional systems, this is due to the 
thermally induced fluctuations of the 
smectic layers which can be of two 
different types. 

Bending of the liquid layers (stiffness 
constant Kz-10-” N), during which 
the layer spacing is maintained. 
Compression and dilatation of the 
layers (constant B G 1 O6 N m-2). 

The energetics of these two effects can 
be expressed in terms of u(r), the layer 
displacement from its equilibrium posi- 
tion, leading to the Landau-De Gennes 
free energy density: 

Expanding u(r) in a Fourier series leads 
to  an expression for the free energy 
density in terms of the modes of the 
wave vector k associated with each 

(continued on page 2) 
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Fourier component. Next the equip- 
artition theorem can be used to assign 
an energy fk,Tto each mode. Integrating 
over all modes leads to the expression for 
the mean-squared layer displacements: 

Here L is the sample size and d the 
smectic layer spacing. Hence (u2(r)) 
diverges logarithmically with the sample 
size; introducing the number of layers 

N=Lld this divergence takes the form 
In(N). 

The effects of the mean squared layer 
displacement diverging logarithmically 
with the system size (Landau-Peierls 
instability) are rather subtle. The resultant 
X-ray diffraction signature has been cal- 
culated by Cailk [ 2 ] .  In the z-direction 
perpendicular to  the layers, the divergent 
thermal fluctuations transform the dis- 
crete Bragg peaks into algebraic 'cusps' 
(see figure 2) with the asymptotic power- 
law form: 

where q is the wave vector transfer (see 
Appendix figure A l )  and qo = 2 x / d  
represents the position of the first-order 
diffraction peak. As we see the expon- 
ent q of the algebraic decay is directly 
related to the elastic constants of the 
system. The magnitude of q is quite 
small, with typical measured values of 
q=0.1-0.3 near the smectic-Nnematic 
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figure 1. Schematic representation of (a) a smectic liquid crystal, (b) a smectic liquid 
crystalline polymer and (c) a weakly crosslinked smectic elastomer network Crosslinks 
are represented by cylinders 

a 2a 3 a  r a l a  3a r 

?n/a .Inla 6 n l a  q 

Figure 2 
intensity I(9) for (a) long range ordering and (b) algebraically decaying ordering 

Schematic picture of the pair correlation function G(r )  and the resulting X-ray 

phase transition temperature (TAN), where 
B approaches zero. At all other temper- 
atures, 7120, which results in a saturated 
lineshape with essentially l/qz tails. This 
can make the discrimination between 
Caille lineshapes and normal Bragg peaks 
difficult. Nevertheless Caille lineshapes 
have been demonstrated for monomeric 
smectic liquid crystals 131, smectic polymers 
[4] and surfactant membranes [51. 

Conformal and 
independent fluctuations 
in freely suspended 
smectic films 
A unique property of smectic liquid 
crystals is their ability to form films that 
are freely suspended over an aperture in 
a frame. In such a film the smectic layers 
align with a high degree of uniformity 
parallel to the two flat air-film interfaces. 

To accomplish X-ray reflectivity measure- 
ments-which give a large footprint at 
small incident angles-we succeeded in 
making films as large as 1x3 cm2. Even 
for such areas the film thickness L can be 
easily varied from several hundreds of 
molecular layers (some pm and thus 
essentially bulk systems) down to  two 
layers (typically 5-6 nm). Because of 
these properties freely suspended smectic 
films constitute ideal model systems. 

Similarly to rough surfaces the thermal 
fluctuations of the smectic layers in a film 
give rise to diffuse scattering at angles 
away from the specular reflectivity (see 
Appendix). The intensity depends on the 
wavelength of the fluctuations and is 
determined by the layer displacement 
function (u2(0,z)) and the interlayer 
displacement-displacement correlation 
function C(R,Z,Z’)=(U~(R.Z)U~(O,Z’)). Here 
R is in the plane of the film and z along 

the normal, while the displacement 
functions depend on the surface tension 
yand the elastic constants 6 and K [6]. At 
long in-plane length scales R>R, (small 
wave vectors) all the layers are found to  
fluctuate conformally, i.e. they move in 
unison [7]. For R>R, such a conformality 
is expected to vanish (see figure 3), start- 
ing between top and bottom of the film. 
In general, R,=(L/B)”2, hence loss of 
conformality can be expected at large 
in-plane wave vectors (small R) for thick 
films and/or systems with a small value 
of B. 

The liquid crystalline compound 
p,p’-diheptylazoxybenzene (7AB) has 
been used (see figure 4). We worked 
about 0.5”C below the second-order 
smectic- nematic phase transition [8], 
where B can be expected to  become 
small, and with two film thicknesses (24 
and 100 layers). The observed intensity is 
essentially the Fourier transform of 
C(R,z,z’) [6, 71. Specular scans (along qz 
at qy = 0) and diffuse longitudinal scans 
(along qz at constant qy) for a 24 layer 
film as taken at beamline BM32 at ESRF 
(Grenoble) are presented in figure 5(a). 
At small 9, the diffuse scattering is the 
coherent superposition of the scattering 
from each layer, showing maxima and 
minima at the same positions as the 
specular reflectivity. This is the signature 
of conformality [9]. The disappearance of 
the interference fringes at large qv 
indicates that top and bottom of the film 
no longer fluctuate in unison. At the 
same point the broadening and weakening 
of the Bragg peak reveals that less than 
the total number of layers contributes 
coherently to the diffuse signal. The sim- 
ilar slopes of the transverse diffuse scans 
at the Bragg peak and its subharmonic 
(figure 5(b ) )  indicate that lateral correla- 
tions between adjacent and next nearest 
layers persist down to  molecular length 
scales. At the same time the very different 
slope of the scan at 9z = 0.79, confirms the 
absence of conformality between top and 
bottom of the film. A more quantitative 
description has been given elsewhere [ I  01. 

In conclusion a crossover from con- 
formal fluctuations (at large wavelength) 
to  independent fluctuations (at shorter 
wavelength) has been observed in freely 
suspended smectic films. The specific 
geometry to  measure the diffuse scat- 
tering in combination with the large 
dynamic range possible at a third 
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+ /N+C.HI, 

Y O  
C,HII 

crystal 32 srnectic 53 nematic 70 isotropic 
I J I  I 

F/gure 3 Conformal and independent fluc- Figure 4 The compound 7AB and its phase 
tuations of top and bottom of a srnectic film 
at  long and short wavelengths, respectively 

transitions ("C) 

10-1 , 
I N-21 

I 
0.10 0.15 0.20 0.25 

q s w  

Figure 5. 
a 100 layer film a t  (from top to bottom) the Bragg peak (qz = qo), a subharmonic (9, = 0.5q0), 
and an intermediate position qZ = (0.7qo). 

(a) Longitudinal diffuse scans of a 24 layer film of 7AB. (b) Transverse diffuse scans of 

generation synchrotron allowed us to 
probe wave vectors down to inverse 
lateral distances between molecules. 

Induction of true long- 
range order in smectic 
elastomers 

In a smectic side-chain polymer (figure 
l(b)) the mesogenic molecules are 
attached to polymer chains via flexible 
spacer groups. Although the phase trans- 
ition temperatures can differ significantly 
from those of its monomeric counterpart 
due to the coupling between the '1-D' 
layers and the ensemble of polymer 
chains, the Landau-Peierls instability 
persists in such systems [4]. These liquid 
crystalline polymers can be weakly cross- 
linked into an elastomer network (figure 
l(c) with almost no change in the phase 
transition temperatures. In such a smectic 
elastomer, however, the fluctuating smec- 
tic layers cannot move past crosslinks 
in the network. The network coupling 
imposes a penalty for relative translations 
between the orientationally ordered fluid 
layers and the polymer network. A recent 
continuum theory has predicted that 
the fluctuations associated with the 
Landau-Peierls instability can be 
suppressed in this situation [ l  11. 

The marginally stable,quasi-periodic 
structure of normal '1-D' fluid stacks 
should be transformed into a fully 
periodic one with proper long range 
order, and the resultant diffraction should 
change from Caille lineshapes to normal 
Bragg peaks (see figure 2). 

Measurements for both an uncross- 
linked smectic acrylate and the corres- 
ponding crosslinked polymer [ 121 (see 
figure 6) were done at T=55.0°C, which 
is in the smectic-A phase well below TAN 
and well above the glass transition Tg. In 
order to get monodomain samples, the 
uncrosslinked polymer has been aligned 
with a magnetic field. In contrast, the 
liquid crystalline groups in the crosslinked 
elastomer have been aligned with a strain 
field, which was applied in situ to  freely 
suspended samples. At beamline X-1OA 
(NSLS, Brookhaven National Laboratory, 
USA.) multiple-Bragg reflections were 
used for the monochromator and the 
analyser crystals, leading to a strong 
fall-off of the intensity of the incident 
beam according to l/q3.6. This is much 
sharper than l/q2 and therefore 
sufficiently steep for the present 
lineshape measurement. To appreciate 
the situation it is important to realize that 
a Caille lineshape cannot have an 
asymptotic q-dependence that is steeper 

than l/q2, whereas the behaviour of a 
true Bragg peak is not bound by this 
constraint. Even a Bragg peak that has 
been broadened by lattice imperfections 
can in principle still be sharper than l/q2 
and may not reach this asymptotic limit 
for several decades of intensity. 

Figure 7(a )  shows the scattering 
intensity from the first-order diffraction 
of both the crosslinked elastomer and the 
corresponding uncrosslinked polymer. 
Figure 7(b) compares the asymptotic 
slopes of both peaks [13]. The intensity 
tails of the uncrosslinked polymer have a 
slope of -1.85*0.10. This value is some- 
what less than the theoretical limit of 2 
due to  the finite mosaic width of the 
sample [14]. This mosaic width, which 
measures the variation of layering direc- 
tions about the average, was 2.5" for the 
elastomer and 4.1" for the polymer. In 
fact, the mosaic distribution causes the 
Caille lineshape to vary continuously 
between a power law with an exponent 
of 2-71 (for a single orientation sample 
with no mosaic spread) to one with an 
exponent of 1-71 (for a random powder). 
Hence any value between the limits 1 and 
2 is evidence for a Caille lineshape. 
In contrast to  the lineshape of the 

a) uncrosslinked polymer 

I b) crosshlmg agent 

F/gure 6 The uncrosslinked side-chain liquid 
crystalline polymer (Mn = 11,200 g mol-') has 
been synthesized by radical copolymerization 
It has 5 rnol% side chains which terminate 
with hydroxyl groups and which are cross- 
linked to obtain the elastomer The phase 
transitions for uncrosslinked polymer (g 26 SA 
82 N 110 I) and elastomer (9 31 SA 80 N 11 1 I) 
are very similar 
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I " "  

* 1 100 

1 ..' 
I 
I ' *  I 

Figure 7 (a) First-order diffraction intensity 
from the smectic uncrosslinked polymer 
(squares) and elastomer network (triangles), 
respectively The polymer data are shifted 
one decade down for clarity (b) comparison 
of the diffraction intensity tails from the 
elastomer (circles. slope -2 40*0 10) and 
the corresponding uncrosslinked polymer 
(triangles, slope -1 85*0 10) 

uncrosslinked polymer, the scattering 
intensity for the smectic elastomer 
decreases rapidly away from q,,, with a 
slope of -2.40*0.10 on a log-log plot 
over 3 orders of magnitude. Hence the 
Bragg scattering from the elastomer is 
significantly sharper than a Caille 
power-law lineshape, which saturates at 
a limiting slope of -2. Clearly, the 
dramatic sharpening of the elastomer 
lineshape is correlated with the existence 
of percolating crosslinks and the resultant 
change in polymer topology. 

In summary, we have found the first 
evidence for the existence of long 
range translational order in soft ' 1  -D' 
layered systems embedded in 3-D space, 
by examining a weakly crosslinked 

smectic elastomer network [ 131. The 
stability of the layered structure against 
thermal fluctuations is dramatically 
enhanced by the crosslinked architecture, 
to  the extent that the usual 
Landau-Peierls instability and the 
resultant logarithmically divergent mean 
squared layer displacements are no 
longer observed. 
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Appendix: Specular and 
diffuse X-ray reflectivity 
X-ray reflectivity is concerned with an 
X-ray beam of wavelength il or wave 
vector k = 2nIA incident under a small 

angle a on a surface. A typical experi- 
mental situation is shown in figure A l ,  
with for y=O the wave the vector kf of 
the outgoing beam in the plane of 
incident wave vector and the surface 
normal.For elastic scattering lkil = lkfl = Ikl 
and the wave vector transfer is given by 
q = kf-ki= 2k sina. For specular reflectiv- 
ity a=P and q = 9z parallel to the surface 
normal. The scattering of such a plane 
wave can be described in terms of a 
macroscopic index of refraction n, which 
(neglecting absorption) can be written 
as n=1-6, with 6=pereA212n where pe  
is the electron density of the medium 
and re the classical radius of the electron. 
For many materials of interest 6 is of 
the order of so that n is slightly 
smaller than 1. Hence according to Snell's 
law the X-ray beam is refracted away 
from the normal to  the interface and 
for small angles a< ac= cos-'(n)=0.15" 
total reflection occurs. For a x ,  the 
specularly reflected intensity RF is given 
by Fresnel's law: 

RF =lsinai(n'-cos'a)l ' ' I  =(La) 
where the last approximate equality 
holds for a >> a,. A typical reflectivity 
curve showing these features is given in 
figure AZ(a) 

4 
sina-(n2 -cos' ac 

' t  

figure A I .  Scattering geometry in (a) real space and (b) reciprocal space for a = p and w = 0. 

figure A2. 
reflectivity of a 60 nm isotropic film (6 = 4 ~ 1 0 - ~ ) ,  and (c) the same film with an internal eriodic 

outer parts smectic layers). 

Model calculations of (a) Fresnel reflectivity of a single interface (6 = 4x1 0-6), (b) 

structure of 3 nm with 6, = 4 ~ 1 0 - ~  (1.6 nrn central part smectic layers) and 62 = 2x10- B (0.7 nm 
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Without going into further details we 
remark that in the case of an isotropic 
structureless film, reflection also occurs 
at the second interface. Interference 
between the two reflected signals-that 
have acquired a phase difference pro- 
portional to the film thickness-leads to 
interferences (Kiessig fringes) on top of 
the Fresnel reflectivity (see figure A2(b)). 
Finally in the case of a freely suspended 
smectic film the periodic layer structure 
gives rise to finite size broadened Bragg- 
like peaks, that in turn are superimposed 
on this structure (see figure A2(c)). Hence 

figure A3. Microscopic roughness or 
fluctuations leading to a diffuse component 
of the reflectivity. 

specular X-ray reflectivity measurements 
can be interpreted as the result of these 
various effects, with the average electron 
density profile along the film normal as 
an important parameter. In addition 
roughness or fluctuation effects have to 
be taken into account. 

Figure A3 shows roughness c.q. fluctu- 
ations on a microscopic scale which 
causes scattering away from the specular 
condition. The resulting diffuse reflec- 
tivity can be measured by rocking the film 
so that a+P= constant with a + p  at 
w =  0 (qx scan, see figure A1 1. As smectic 
A systems are uniaxial alternatively the 
detector can be moved out of the 
scattering plane over an angle w (qy 
scan, see figure 5(b)). In figure 5(a) the 
wavelength dependence of the 
fluctuations is probed by making q, scans 
(a = p, parallel to the specular direction) 
at various offsets ofw setting qy. 
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n 1989, Chandani et al. showed that the tristable I switching, already observed by themselves and by 
others in 4-(1-methylheptyloxycarbonyl) phenyl 
4'-0ctyloxybiphenyl-4-carboxylate (MHPOBC), 

C8H170 COZ CO~C*H(CH~)C~HI~  

Frustoelectricity in 
Liquid Crystals 

is the electric-field-induced transition between antiferroelectric 
and ferroelectric phases [ l ,  21. Thus they disclosed antifer- 
roelectricity in liquid crystals, clarifying an antiferroelectric smectic 
C*-like phase, designated as Sm C,*, where the tilting occurs in 
the same direction but in the opposite senses in adjacent layers 
as also reported in the smectic O* phase [3].Three other smectic 
C*-like phases were observed in MHPOBC at that time [41; 
Chandani eta/. designated these phases as Sm C,*, Sm Cp*, and 
Sm C; in the order of decreasing temperature, identifying Sm 
Cp* as ordinary ferroelectric C *  [5-71. Gorecka et a/. soon 
proved that Sm C; is a ferrielectric phase [8]. Since then, more 
than 1000 related compounds have been synthesized because of 
a potential application to  liquid crystal displays, and several 
additional Sm C*-like phases have been found. A possible, most 
general phase sequence experimentally revealed is [91: 
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